Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
نویسندگان
چکیده
A device for acoustic particle manipulation in the 40 MHz range for continuous-flow operation in a 50 μm wide PDMS channel has been evaluated. Unidirectional interdigital transducers on a Y-cut Z-propagation lithium nixobate wafer were used to excite a surface acoustic wave that generated an acoustic standing wave inside the microfluidic channel. It was shown that particle alignment nodes with different inter-node spacing could be obtained, depending on device design and driving frequency. The observed inter-node spacing differed from the standard half-wavelength inter-node spacing generally employed in bulk acoustic transducer excited resonant systems. This effect and the related issue of acoustic node positions relative the channel walls, which is fundamental for most continuous flow particle manipulation operations in channels, was evaluated in measurements and simulations. Specific applications of particle separation and alignment where these systems can offer benefits relative state-of the art designs were identified.
منابع مشابه
Surface acoustic wave-induced precise particle manipulation in a trapezoidal glass microfluidic channel
Surface acoustic wave (SAW) excitation of an acoustic field in a trapezoidal glass microfluidic channel for particle manipulation in continuous flow has been demonstrated. A unidirectional interdigital transducer (IDT) on a Y-cut Z-propagation lithium niobate (LiNbO3) substrate was used to excite a surface acoustic wave at approximately 35 MHz. An SU8 layer was used for adhesive bonding of the ...
متن کاملContinuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
This work introduces a method of continuous particle separation through standing surface acoustic wave (SSAW)-induced acoustophoresis in a microfluidic channel. Using this SSAW-based method, particles in a continuous laminar flow can be separated based on their volume, density and compressibility. In this work, a mixture of particles of equal density but dissimilar volumes was injected into a m...
متن کاملExperimental and numerical studies on standing surface acoustic wave microfluidics.
Standing surface acoustic waves (SSAW) are commonly used in microfluidics to manipulate cells and other micro/nano particles. However, except for a simple one-dimensional (1D) harmonic standing waves (HSW) model, a practical model that can predict particle behaviour in SSAW microfluidics is still lacking. Herein, we established a two-dimensional (2D) SSAW microfluidic model based on the basic t...
متن کاملFabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.
Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A poly...
متن کاملNovel surface acoustic wave (SAW)-driven closed PDMS flow chamber
In this article, we demonstrate a novel microfluidic flow chamber driven by surface acoustic waves. Our device is a closed loop channel with an integrated acoustic micropump without external fluidic connections that allows for the investigation of small fluid samples in a continuous flow. The fabrication of the channels is particularly simple and uses standard milling and PDMS molding. The micr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical microdevices
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2012